<table>
<thead>
<tr>
<th>Depth to Top of Soil Layer (feet)</th>
<th>Depth to Bottom of Soil Layer (feet)</th>
<th>Material Type</th>
<th>USCS Group Symbol (ASTM D2487)</th>
<th>Susceptible Soil? (Y, N)</th>
<th>Total Soil Unit Weight γ_s (pcf)</th>
<th>Field SPT Blow Count N_{Field} (blows/ft)</th>
<th>Type of Soil Sampler</th>
<th>Fines Content FC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>5.00</td>
<td>Engineered Fill</td>
<td>N</td>
<td></td>
<td>125.0</td>
<td>12.00</td>
<td>SPT1</td>
<td>20.00</td>
</tr>
<tr>
<td>5.00</td>
<td>10.00</td>
<td>SM</td>
<td>Y</td>
<td></td>
<td>115.0</td>
<td>18.00</td>
<td>SPT1</td>
<td>20.00</td>
</tr>
<tr>
<td>10.00</td>
<td>15.00</td>
<td>SM</td>
<td>Y</td>
<td></td>
<td>115.0</td>
<td>18.00</td>
<td>SPT1</td>
<td>5.00</td>
</tr>
<tr>
<td>15.00</td>
<td>20.00</td>
<td>SP</td>
<td>Y</td>
<td></td>
<td>115.0</td>
<td>15.00</td>
<td>SPT1</td>
<td>5.00</td>
</tr>
<tr>
<td>20.00</td>
<td>25.00</td>
<td>SP</td>
<td>Y</td>
<td></td>
<td>115.0</td>
<td>20.00</td>
<td>SPT1</td>
<td>15.00</td>
</tr>
<tr>
<td>25.00</td>
<td>30.00</td>
<td>SM</td>
<td>Y</td>
<td></td>
<td>115.0</td>
<td>20.00</td>
<td>SPT1</td>
<td>15.00</td>
</tr>
<tr>
<td>30.00</td>
<td>35.00</td>
<td>CL</td>
<td>N</td>
<td></td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>40.00</td>
<td>SP</td>
<td>Y</td>
<td></td>
<td>120.0</td>
<td>25.00</td>
<td>SPT1</td>
<td>5.00</td>
</tr>
<tr>
<td>40.00</td>
<td>45.00</td>
<td>SP</td>
<td>Y</td>
<td></td>
<td>120.0</td>
<td>35.00</td>
<td>SPT1</td>
<td>5.00</td>
</tr>
<tr>
<td>45.00</td>
<td>50.00</td>
<td>Rock</td>
<td>N</td>
<td></td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEISMIC DESIGN PARAMETERS

- Earthquake Moment Magnitude, M_w: 7.00
- Peak Ground Acceleration, A_{max}: 0.83 g
- Required Factor of Safety, FS: 1.20

BORING DATA AND SITE CONDITIONS

- Boring No.: B-1
- Ground Surface Elevation: 1,000.00 feet
- Proposed Grade Elevation: 1,000.00 feet
- GWL Depth Measured During Test: 15.00 feet
- GWL Depth Used in Design: 10.00 feet
- Borehole Diameter: 8.00 inches
- Hammer Weight: 140.00 pounds
- Hammer Drop: 30.00 inches
- Hammer Energy Efficiency Ratio, ER (%): 80.00 %
- Hammer Distance to Ground Surface: 5.00 feet
- Topographic Site Condition: TSC3 (Level Ground with Nearby Free Face)
 - Ground Slope, S (%): Leave this blank
 - Free Face Distance to Slope Height Ratio, (L/H): 5.00 <-- Enter (L/H) Enter H >>> 15.00 feet
SUMMARY OF RESULTS

Severity of Liquefaction:
Total Thickness of Liquefiable Soils: 20.00 feet (cumulative total thickness in the upper 65 feet)
Liquefaction Potential Index (LPI): 19.01

Seismic Ground Settlements:
- Project Location
- Total Seismic Settlement: 2.27 inches

Seismic Lateral Displacements:
- Cyclic Lateral Displacement: 1.93 inches

NOTES AND REFERENCES

- This method of analysis is based on observed seismic performance of level ground sites using correlation with normalized and fines-corrected SPT blow count, \((N_1)^{60cs} = f \) where \((N_1)^{60cs} = N_{field} \times C_N \times C_{E} \times C_{B} \times C_{R} \times C_{S} \)
- Seismic susceptibility screening is performed to identify soil layers assumed to be non-liquefiable based on laboratory test results using the criteria proposed by Cetin and Seed (2003)
- Ishihara and Yoshimine (1992), "Saturated Soils"
- **Residual strength values of liquefied soils are based on correlation with post-earthquake, normalized and fines-corrected SPT blow count derived by Idriss and Boulanger (2008)."

REFERENCES:

5. Ishihara and Yoshimine (1992), "Saturated Soils"
9. SPTLIQ.xlsm SPTLIQ Output Sheet 1