SIMPLIFIED EVALUATION OF SITE CLASS AND GEOTECHNICAL DESIGN PARAMETERS USING STANDARD PENETRATION TEST (SPT) DATA

(Copyright © 2015, 2026, SPTPROP, All Rights Reserved; By: InfraGEO Software)

PROJECT INFORMATION	
Project Name	
Project No.	
Project Location	
Analyzed By	
Reviewed By	

GENERAL INPUT DATA	
Analysis Description	
Boring ID No.	BH-1
Ground Surface Elevation	100.0 feet
Proposed Grade Elevation	100.0 feet
Total Unit Weight of New Fill	120.0 pcf
Borehole Diameter	8.0 inches
Hammer Weight	140.0 pounds
Hammer Drop	30.0 inches
Hammer Efficiency Ratio, ER	80.0 %
Hammer Dist. to Ground Surface	5.0 feet
Groundwater Depth During Test	80.0 feet

SITE CLASSIFICATION BASED ON SPT DATA

- Based on the recommendations by Idriss and Boulanger (2008), the normalized SPT blow count is defined as $(N_1)_{60} = N_{60} C_N$ where $N_{60} = N_{field} C_R C_R C_S$ and the relative density of granular soils is estimated as $D_r = 15 \left[(N_1)_{60} \right]^{6.5} \quad \text{in percent}$

Shear wave velocities are estimated using the empirical correlations with SPT N_{60} values for various soil types, as derived by Brandenberg et al. (2010).

Site classification is analyzed using the extrapolation method by Boore (2004). Ave. Shear Wave Velocity (Top 30 m), $V_{s30} = 10^{a+b \log(V_{s40})}$ Coefficients a and b are defined at depths between 10 m and 30 m. where a = 0.013795

b = 1.026300

Ave. Shear Wave Velocity (Top Depth d), $V_{sd} = 223.0 \text{ m/s}$ $Computed V_{s30} = 265.0 \text{ m/s}$

ASCE 7-16 Site Class Based on V_{s30}: D

ASCE 7-22 Site Class Based on V_{s30}: D

ASCE 7-22 Site Class Based on (V_{s30}) x 1.3: CD

ASCE 7-22 Site Class Based on (V_{s30}) / 1.3: DE

SOIL STRENGTH AND DEFORMATION MODULUS PARAMETERS

- For granular soils, effective peak friction angle, φ', is estimated from correlations with the normalized SPT blow count, (N₁)₆₀ from Bowles (1996) and recommended adjustments from Caltrans Geotechnical Manual (2014).
 - For cohesive soils, undrained shear strength, S_u are estimated using the correlation chart $(N_1)_{60}$ value provided in the Caltrans Geotechnical Manual (2014).
- Modulus of Elasticity, E_{ss} values for granular soils and cohesive soils are estimated from correlations with SPT N₆₀ and undrained shear strength, S_{ss} respectively summarized by Bowles (1996).
- Shear Modulus, $G = E_s / [3 (1 2\mu)]$ and Bulk Modulus, $K = E_s / [2 (1 + \mu)]$ based on theory of elasticity where μ is the Poisson's ratio of the soil. Typical values of Poisson's ratio are estimated from various references.

REFERENCES:

- 1. AASHTO, 1988. Manual on Subsurface Investigations.
- 2. America Society of Civil Engineers, ASCE 7-16 and ASCE 7-22 Guidelines.
- Boore, D.M., 2004. "Estimating Vs(30) (or NEHRP Site Classes) from shallow velocity models (depths < 30 m)", Bulletin of Seismological Society of America, 94(2), pp. 591-597.
- Brandenberg, S.J., Bellana, N. and Shantz, T., 2010. "Shear Wave Velocity as a Statistical Function of Standard Penetration Test Resistance and Vertical Effective Stress at Caltrans Bridge Sites," PEER Report 201/03.
- 5. FHWA, 2002. Subsurface Investigations Reference Manual, Geotechnical Site Characterization.
- 6. Idriss, I.M. and Boulanger, R.W., 2008, "Soil Liquefaction During Earthquakes", EERI Monograph MNO-12.

INPUT SOIL PROFILE DATA				Bottom of	Soil	SPT	SPT	SPT	SPT	SPT	Corrected		Apparent Density /	ESTIMATED GEOTECHNICAL DESIGN PARAMETERS								
Depth to Top of Soil Layer	Depth to Bottom of Soil Layer	Material Type USCS Group Symbol (ASTM D2487)	Total Soil Unit Weight	Type of Soil Sampler	Field Blow Count	Soil Layer Elevation	Depth During Test	Corr. For Vert. Stress	Corr. For Hammer Energy	Corr. For Borehole Size	Corr. For Rod Length	Corr. For Sampling Method	SPT Blow Count	SPT Blow Count	Soil Consistency Description FHWA (2002) and AASHTO (1988)	Relative Density	Shear Wave Velocity	Effective Peak Friction Angle	Undrained Shear Strength	Modulus of Elasticity	Shear Modulus	Bulk Modulus
			γt		N _{field}			C _N	C _E	C _B	C_R	Cs	N ₆₀	(N ₁) ₆₀	, ,	$\mathbf{D_r}$	V_s	φ'	Su	Es	G	K
(feet)	(feet)		(pcf)		(blows/ft)	(feet)	(feet)						(blows/ft)	(blows/ft)		(%)	(ft/s)	(deg)	(ksf)	(ksf)	(ksf)	(ksf)
0.0	5.0	SM	120.0	MCal	12.0	95.0	2.5	1.700	1.333	1.150	0.750	0.650	9.0	15.0	Loose Sand	58.0	434.0	33.0		288.0	192.0	115.0
5.0	10.0	CL	120.0	MCal	10.0	90.0	7.5	1.491	1.333	1.150	0.800	0.650	8.0	12.0	Medium Stiff Clay		533.0		0.9	430.0	478.0	159.0
10.0	15.0	CL-ML	120.0	MCal	15.0	85.0	12.5	1.155	1.333	1.150	0.850	0.650	13.0	15.0	Stiff Clay		649.0		1.5	937.0	1,562.0	335.0
15.0	20.0	SM	120.0	SPT1	25.0	80.0	17.5	0.976	1.333	1.150	0.950	1.000	36.0	35.0	Dense Sand	89.0	784.0	37.0		612.0	680.0	227.0
20.0	25.0	SW-SM	120.0	MCal	30.0	75.0	22.5	0.861	1.333	1.150	0.950	0.650	28.0	24.0	Medium Dense Sand	73.0	813.0	37.0		516.0	430.0	198.0
25.0	30.0	ML	120.0	SPT1	18.0	70.0	27.5	0.778	1.333	1.150	0.950	1.000	26.0	20.0	Very Stiff Silt		829.0		3.2	2,313.0	2,570.0	857.0
30.0	35.0	SM	120.0	SPT1	12.0	65.0	32.5	0.716	1.333	1.150	1.000	1.000	18.0	13.0	Medium Dense Sand	54.0	849.0	32.0		396.0	330.0	152.0
35.0	40.0	SM	120.0	SPT1	20.0	60.0	37.5	0.667	1.333	1.150	1.000	1.000	31.0	21.0	Dense Sand	69.0	926.0	34.0		552.0	613.0	204.0
40.0	45.0	SM	120.0	SPT1	30.0	55.0	42.5	0.626	1.333	1.150	1.000	1.000	46.0	29.0	Dense Sand	81.0	990.0	36.0		732.0	813.0	271.0
45.0	50.0	SM	120.0	SPT1	45.0	50.0	47.5	0.592	1.333	1.150	1.000	1.000	69.0	41.0	Very Dense Sand	96.0	1,057.0	38.0		1,008.0	1,680.0	360.0
		-				_				-												

SPTPROP(tc).xlsm